Goto

Collaborating Authors

 Middlesex County


A Unifying View of Optimism in Episodic Reinforcement Learning

Neural Information Processing Systems

In this paper we provide a general framework for designing, analyzing and implementing such algorithms in the episodic reinforcement learning problem. This framework is built upon Lagrangian duality, and demonstrates that every model-optimistic algorithm that constructs an optimistic MDP has an equivalent representation as a value-optimistic dynamic programming algorithm. Typically, it was thought that these two classes of algorithms were distinct, with model-optimistic algorithms benefiting from a cleaner probabilistic analysis while value-optimistic algorithms are easier to implement and thus more practical. With the framework developed in this paper, we show that it is possible to get the best of both worlds by providing a class of algorithms which have a computationally efficient dynamic-programming implementation and also a simple probabilistic analysis. Besides being able to capture many existing algorithms in the tabular setting, our framework can also address large-scale problems under realizable function approximation, where it enables a simple model-based analysis of some recently proposed methods.


Q_nonlinear_camera_ready

Neural Information Processing Systems

Zap Q-learning is a recent class of reinforcement learning algorithms, motivated primarily as a means to accelerate convergence. Stability theory has been absent outside of two restrictive classes: the tabular setting, and optimal stopping. This paper introduces a new framework for analysis of a more general class of recursive algorithms known as stochastic approximation. Based on this general theory, it is shown that Zap Q-learning is consistent under a non-degeneracy assumption, even when the function approximation architecture is nonlinear. Zap Q-learning with neural network function approximation emerges as a special case, and is tested on examples from OpenAI Gym. Based on multiple experiments with a range of neural network sizes, it is found that the new algorithms converge quickly and are robust to choice of function approximation architecture.


Human Expertise in Algorithmic Prediction

Neural Information Processing Systems

We introduce a novel framework for incorporating human expertise into algorithmic predictions. Our approach leverages human judgment to distinguish inputs which are algorithmically indistinguishable, or "look the same" to predictive algorithms. We argue that this framing clarifies the problem of human-AI collaboration in prediction tasks, as experts often form judgments by drawing on information which is not encoded in an algorithm's training data. Algorithmic indistinguishability yields a natural test for assessing whether experts incorporate this kind of "side information", and further provides a simple but principled method for selectively incorporating human feedback into algorithmic predictions. We show that this method provably improves the performance of any feasible algorithmic predictor and precisely quantify this improvement. We find empirically that although algorithms often outperform their human counterparts on average, human judgment can improve algorithmic predictions on specific instances (which can be identified ex-ante). In an X-ray classification task, we find that this subset constitutes nearly 30% of the patient population. Our approach provides a natural way of uncovering this heterogeneity and thus enabling effective human-AI collaboration.


Achieving Constant Regret in Linear Markov Decision Processes

Neural Information Processing Systems

We study the constant regret guarantees in reinforcement learning (RL). Our objective is to design an algorithm that incurs only finite regret over infinite episodes with high probability. We introduce an algorithm, Cert-LSVI-UCB, for misspecified linear Markov decision processes (MDPs) where both the transition kernel and the reward function can be approximated by some linear function up to misspecification level ฮถ. At the core of Cert-LSVI-UCB is an innovative certified estimator, which facilitates a fine-grained concentration analysis for multi-phase value-targeted regression, enabling us to establish an instance-dependent regret bound that is constant w.r.t. the number of episodes.


Kronecker Determinantal Point Processes

Neural Information Processing Systems

Determinantal Point Processes (DPPs) are probabilistic models over all subsets a ground set of N items. They have recently gained prominence in several applications that rely on "diverse" subsets.


STL: Still Tricky Logic (for System Validation, Even When Showing Your Work) Rohan Paleja Lincoln Laboratory

Neural Information Processing Systems

As learned control policies become increasingly common in autonomous systems, there is increasing need to ensure that they are interpretable and can be checked by human stakeholders. Formal specifications have been proposed as ways to produce human-interpretable policies for autonomous systems that can still be learned from examples. Previous work showed that despite claims of interpretability, humans are unable to use formal specifications presented in a variety of ways to validate even simple robot behaviors. This work uses active learning, a standard pedagogical method, to attempt to improve humans' ability to validate policies in signal temporal logic (STL). Results show that overall validation accuracy is not high, at 65% 15% (mean standard deviation), and that the three conditions of no active learning, active learning, and active learning with feedback do not significantly differ from each other. Our results suggest that the utility of formal specifications for human interpretability is still unsupported but point to other avenues of development which may enable improvements in system validation.


Approximating Interactive Human Evaluation with Self-Play for Open-Domain Dialog Systems

Neural Information Processing Systems

Building an open-domain conversational agent is a challenging problem. Current evaluation methods, mostly post-hoc judgments of static conversation, do not capture conversation quality in a realistic interactive context. In this paper, we investigate interactive human evaluation and provide evidence for its necessity; we then introduce a novel, model-agnostic, and dataset-agnostic method to approximate it. In particular, we propose a self-play scenario where the dialog system talks to itself and we calculate a combination of proxies such as sentiment and semantic coherence on the conversation trajectory. We show that this metric is capable of capturing the human-rated quality of a dialog model better than any automated metric known to-date, achieving a significant Pearson correlation (r >.7, p <.05). To investigate the strengths of this novel metric and interactive evaluation in comparison to state-of-the-art metrics and human evaluation of static conversations, we perform extended experiments with a set of models, including several that make novel improvements to recent hierarchical dialog generation architectures through sentiment and semantic knowledge distillation on the utterance level. Finally, we open-source the interactive evaluation platform we built and the dataset we collected to allow researchers to efficiently deploy and evaluate dialog models.


Optimistic Gittins Indices

Neural Information Processing Systems

Starting with the Thomspon sampling algorithm, recent years have seen a resurgence of interest in Bayesian algorithms for the Multi-armed Bandit (MAB) problem. These algorithms seek to exploit prior information on arm biases and while several have been shown to be regret optimal, their design has not emerged from a principled approach. In contrast, if one cared about Bayesian regret discounted over an infinite horizon at a fixed, pre-specified rate, the celebrated Gittins index theorem offers an optimal algorithm. Unfortunately, the Gittins analysis does not appear to carry over to minimizing Bayesian regret over all sufficiently large horizons and computing a Gittins index is onerous relative to essentially any incumbent index scheme for the Bayesian MAB problem. The present paper proposes a sequence of'optimistic' approximations to the Gittins index. We show that the use of these approximations in concert with the use of an increasing discount factor appears to offer a compelling alternative to state-of-the-art index schemes proposed for the Bayesian MAB problem in recent years by offering substantially improved performance with little to no additional computational overhead. In addition, we prove that the simplest of these approximations yields frequentist regret that matches the Lai-Robbins lower bound, including achieving matching constants.


Asynchronous Parallel Greedy Coordinate Descent

Neural Information Processing Systems

In this paper, we propose and study an Asynchronous parallel Greedy Coordinate Descent (Asy-GCD) algorithm for minimizing a smooth function with bounded constraints. At each iteration, workers asynchronously conduct greedy coordinate descent updates on a block of variables. In the first part of the paper, we analyze the theoretical behavior of Asy-GCD and prove a linear convergence rate. In the second part, we develop an efficient kernel SVM solver based on Asy-GCD in the shared memory multi-core setting. Since our algorithm is fully asynchronous--each core does not need to idle and wait for the other cores--the resulting algorithm enjoys good speedup and outperforms existing multi-core kernel SVM solvers including asynchronous stochastic coordinate descent and multi-core LIBSVM.


Edge-exchangeable graphs and sparsity

Neural Information Processing Systems

Many popular network models rely on the assumption of (vertex) exchangeability, in which the distribution of the graph is invariant to relabelings of the vertices. However, the Aldous-Hoover theorem guarantees that these graphs are dense or empty with probability one, whereas many real-world graphs are sparse. We present an alternative notion of exchangeability for random graphs, which we call edge exchangeability, in which the distribution of a graph sequence is invariant to the order of the edges. We demonstrate that edge-exchangeable models, unlike models that are traditionally vertex exchangeable, can exhibit sparsity. To do so, we outline a general framework for graph generative models; by contrast to the pioneering work of Caron and Fox [12], models within our framework are stationary across steps of the graph sequence. In particular, our model grows the graph by instantiating more latent atoms of a single random measure as the dataset size increases, rather than adding new atoms to the measure.